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Figure 8-20 Multiple least cost Steiner networks 
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(ii) Let ABC be any triangle in the plane with internal angles less than 120°. 

Then:  

(a) a generalised Steiner network may have no Steiner point inside37 the 

geodesic triangle ABC on the surface S*; Proof: the geodesic triangle may 

have vertex angles which are completely different from the plane triangle 

ABC. For example, the vertices could be collinear in S*. 

(b) every minimal network will be comprised of arcs lying inside or on the 

geodesic triangle ABC (where geodesic paths are defined as the globally 

shortest paths connecting the vertices). Proof: (see Figure 8-21) if P is a 

Steiner point lying outside the geodesic triangle then the path from P to 

at least one of the vertices must cross one side of the triangle at P’, say. 

Now length AP’B<APB thus a network with P’ as a node is a lower cost 

solution than the network with P as a node.  
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Figure 8-21 Steiner points in a geodesic triangle 
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We may consider application of (ii) to the analytically tractable problem in which 

F=α/y where α>0. Solving the differential equation at the start of this subsection (see 

Section 12.1.2.2 for more details) we find that least cost paths are arcs of circles (or 

straight lines in the extreme). Now consider the equilateral triangle (Figure 8-22) across 

which this cost function F=α/y has been defined. By symmetry we see that if a Steiner 

point is to be found it must lie along the line AX. Furthermore, network arcs must 

intersect at 120°. When γ=0 we find that angle BAC of the geodesic triangle equals 120° 

and the unique minimal network is the minimal spanning tree. As γ increases a Steiner 

point, P′, will be found on AX between A and P. For sufficiently large γ P′ will coincide 

with P and the curved edges of the geodesic triangle will become straight lines. 
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Figure 8-22 Steiner network Q3 in the field F=α/y 
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Taking points (i) and (ii) above into account an approximate solution procedure for the 

generalised Q3 problem may be defined (Figure 8-23): 

 

(i) find the geodesic paths which together make up the geodesic triangle ABC 

using boundary value, initial value or distance transform methods 

(ii) divide two of the three vertex angles into n+1 (n variable) subdivisions 

defining n new directions at each vertex selected 

(iii) for the two selected vertices, generate the 2n geodesic paths which are 

defined by the selected vertices and the initial directions specified in (ii), 

which lie within the geodesic triangle ABC 

(iv) from the N ≤ n2 intersections of solution paths, select the subset of M points 

for which the intersections occur at approximately 120° (additional 

interpolation may be required to achieve a satisfactory approximation).  

(v) solve the M boundary value problems defined by these intersections and the 

final vertex, or the initial value problems defined by the M intersection 

points and a direction or 120° from both the lines which have created the 

intersection. 

(vi) if the initial value problems in (v) give a solution (one or more) that intersect 

the final vertex then the solution has been found. Alternatively, select the 

boundary value solution(s) that give the initial angle result as close as 

possible to 120°.  
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Figure 8-23 Solution procedure for generalised Steiner networks 
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The method described can also be applied to cases where the weights, wj, are variable, 

by solving for the Steiner point in the plane, thereby determining the angles at the 

Steiner point, and using these for the intersections. In practice, however, the complex 

form of physical surfaces and generalised cost surfaces in the real world coupled with 

multiple constraints, means that alternative procedures such as the Vortal technique 
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described earlier will be the preferred approach. In this case, the geodesic characteristics 

of tension and straightness (parallel transport) are more useful tools than localised 

angular behaviour.  

 

As solutions to Q3 are not generally unique, solutions to Qn cannot be found by 

examining all possible topologies. An heuristic approach may, however, be suggested. 

First, calculate Tn, the generalised mst; second, select sets of vertices from Tn and find 

generalised Steiner points for these subsets using the procedure described above for 

three nodes (where nodes are vertices or Steiner points). Finally use the newly selected 

Steiner minimal sub-networks to replace the original sections of mst, reducing the 

overall length of the mst. Continuation of this selection and replacement procedure will, 

in general, produce a sub-optimal but improved solution network.  

Figure 8-24 Steiner minimal network in the plane, Q3 
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To illustrate this process consider the cases n=3 and n=4.  

 

For n=3 T3 is first solved by providing a ‘reference’ solution network with two arcs 

connecting three vertices (Figure 8-24). A Steiner minimum network Q3 is then found, 

using the methods described above, and the length (cost) of this new network is 

compared with that of the mst. The shorter (lower cost) is chosen as the solution 

network. In the diagram above (constant costs in the plane), the path lengths AB+BC > 

AP+ BP+ CP so the Steiner network solution is selected with point P as a new 

intermediate node, at a saving of just under 15%. 
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For n=4 the generalised mst T4 will have three arcs (Figure 8-25a) connecting the four 

vertices {A,B,C,D}. We then select a subset of three vertices, {A,B,C} say, and solve the 

Q3 problem for these three using the methods described above (Figure 8-25b). If the 

new network, ABP1CD is shorter than the length of T4 we have an improved, though 

generally sub-optimal solution to the Q4 problem. Treating the point P1 as fixed we now 

solve the Q3 problem for P1CD yielding a new network with two Steiner points, P1 and 

P2 (Figure 8-25c). Note that P1 will generally no longer be optimally located with 

respect to the ‘fixed points’ A, B and P2 and may be re-adjusted using these three points. 

Iterative adjustment of P1 and P2 continues until there is no worthwhile reduction in the 

length of the network and this is then taken as the solution for Q4. 

 

Had our original choice of subset been {A,C,D}, {B,C,D} or {A,B,D} we might have 

reached different solutions to Q4, possibly shorter (more optimal) than the result 

achieved using {A,B,C}. Similarly, solving the intermediate problem for {P1,A,D} and 

dropping the link CD could have yielded another network topology. The number of 

possible approaches to tackling Q4 is large, but for reasonably behaved cost functions 

the different approaches should yield similar solutions in terms of total cost. For larger 

problems Tn may be found, separated into smaller sub-networks, and the approaches 

described for Q3 and Q4 applied to these, as before. In essence, however, the solution 

process will remain one of trial and error, exploring alternative topologies and 

investigating the sensitivity of networks to alterations in the cost function and weights.  
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Figure 8-25 Solution procedure for the generalised Q4 problem 
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The solution to Q4 when the cost function F = 1/y (cf. F=1/v cited earlier, where v is 

velocity) can be found directly since we know that geodesics will be arcs of circles. For 

the example shown (Figure 8-26) a unique topology with two Steiner points exists, with 
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a total length approximately 20% lower in cost than the mst and 10% less than the 

Steiner solution in the plane. 

Figure 8-26 Solution of the Q4 problem with F = 1/y 
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The above discussion may also be applied to the problem in which vertices are 

weighted. In this case the angles at which arcs meet will no longer be 120°. The solution 

procedure for Q3 may be modified as follows: 

 

(i) solve for the incident angles of arcs at the Steiner point in the plane with 

constant costs (i.e. using the resultant of the weighted vectors) 

(ii) use these angles to select the M boundary points and final solutions, as in the 

previous method. 

 

For example, if the three vertices are weighted 1, 1 and 0.5 then the angles between the 

arcs will be 151°, 104.5° and 104.5°. Selecting the vertices with unit weight and solving 

the initial value problems, a set of M 151° intersections will be found. M boundary 

value problems are then solved using the selected intersections and the remaining 

vertex, with solutions yielding 104.5° inside the geodesic triangle being selected as 

generalised Steiner points. 

 

Further extensions along these lines are possible. For example: application of the 

methods developed to problems of rationalising existing networks; generalisation of the 

Lp metric approach allowing p to be (piecewise) continuous function of location p = 
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p(x,y); and introducing solution procedures based on computational algorithms such as 

Vortal, VTDT and LCDT.  

 

Analysis of fundamental problems in network design and location theory has shown that 

analytic and computational solution methods can be successfully applied when the 

assumption of isotropy is dropped. Distances and paths can be calculated in a variety of 

ways that produce optimal or near-optimal solutions. Much work remains to be 

undertaken in this field but it is now evident that complex, realistic problems can be 

undertaken using tools that hitherto have not been available. 
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9 Conclusions 

9.1 Overview 

As we have shown in the initial part of this study, from a need for better information 

and maps of nations, coastlines, continents, the Earth and the heavens, came a drive for 

new standards, precision in data collection, and the development of new instruments 

and procedures. Together these developments led to the solution of many of the key 

practical and theoretical problems in distance and time measurement, and contributed 

much to our understanding of errors and uncertainty. From these original secure 

foundations, the current body of knowledge, theories, procedures and systems has been 

developed, culminating in today’s range of tools, GIS technologies and advanced 

position determination and measurement systems. 

 

However, the majority of the theoretical development has dealt with homogeneous or 

(radially) symmetric problems. Our study has sought to illustrate and investigate the 

spatial building blocks of such developments, and then to extend the set of measures 

and procedures available in order to address problems experienced in practical, real-

world (inhomogeneous) situations. Of course, many such problems remain unsolved 

and others will be unsolvable (at least, within a formal mathematical or algorithmic 

framework), but a number of promising lines of attack have been developed and 

hopefully these will start to address the issues expressed by Tobler and Harvey in our 

opening quotations.  

9.2 Key observations 

In the preceding Chapters we have explored many aspects of distance and path 

measurement and this process has enabled us to design new solution procedures for a 

significant range of problems within this field. However, before considering the 

outstanding issues and future developments associated with these new procedures, it is 

useful to highlight some of the key observations raised during the course of our 

investigation: 
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Historical foundations: the historical research provides a perspective to the entire 

study whilst being very different in content from most of the subsequent work. It sought 

to show how an understanding of measurement techniques (involving both length and 

time), mathematical formulations, and the development of precision tools (instruments) 

enabled rapid progress to be made. This in turn facilitated safe navigation and thereby 

trade, and provided critical foundations for the industrial and information ages.  

 

The research also demonstrated that an obsession with error and accuracy, in the 

broadest sense, was an essential part of this scientific progress, and is as important 

today as it was in the 18th and 19th centuries. Echoing the requirements of the original 

Longitude Act of 1714, we seek theories and methods that are “Practicable and Useful”, 

i.e. reliable, accurate, practical and repeatable, and, of course, cost effective. It also 

became clear that substantive progress depended on many interlinked factors, and 

frequently it was commercial or military pressures rather than pure scientific research 

that drove this – if anything this is even more the case today than it was in the 18th 

century. 

 

Metrics: the historical analysis included a discussion on the development of more 

advanced distance formulae. This led us to examine the range of expressions that may 

reasonably be used for calculating distance, or more generally the degree of separation 

of pairs or sets of objects belonging to a set. We demonstrated that there are many valid 

generalisations of our common notion of distance and a wide range of methods for the 

computation of distance from coordinate data. The variety of measures used, and their 

differing attributes, is surprising. A number of new results were presented, including 

variants and developments of the standard Euclidean and Riemannian formulae.  

 

The analysis led us to conclude that incremental computation of distance measures is a 

more robust and meaningful approach for many practical problems, despite the 

considerable increase in effort that may be required to achieve this, and the issues of 

path selection it raises. The second conclusion in this area is that whatever measures one 

uses, they must satisfy what we might call the ‘Longitude requirements’ noted above. 
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Paths: If incremental measures are the preferred forms of distance computation, then 

attention becomes focused on the notion of path. In our analysis we distinguish between 

the use of various models to represent real-world linear structures, and the computation 

of path lengths from such representations. When determining distances we make 

implicit or explicit assumptions about the path along which measurement is to take 

place - ratio scale distance measures are generated as a result of a process of 

accumulating a series of two or more ordered point-pair measurements, and when there 

are more than two such ordered pairs we have a path.  

 

There are many possible and reasonable representations or models of path, some of 

which do not support the notion of distance (length) at all. Whilst this latter observation 

has a clear and distinct importance, both from a practical and theoretical perspective, we 

conclude that it does not provide a fundamental block to development of distance-

related analysis, any more than an appreciation of uncertainty in particle physics or the 

complexities of the integers in number theory acts as a block to research and 

development in these fields. In many ways, such issues have the reverse effect, 

stimulating analysis and exploration of the issues, leading to new insights, theories and 

procedures. 

 

Statistics: Distances are determined from point-pairs, but the location of these points 

may not be known precisely. This leads to two linked sets of research and results: the 

first is to compute the expected or average separation of point-pairs under a variety of 

conditions and metrics; and the second is to determine from a given set of 

measurements the nature of the underlying distribution of points. This process is 

technically complex, and whilst a substantial variety of results are presented and 

derived, the prospects for their further development using analytic models appears 

limited. The use of simulation methods, using analytic results as controlled test models, 

would appear to be one of the most productive routes forwards. Such methods must 

have their underlying assumptions, generation procedures and parameters laid out in 

detail, much as with analytic models, but there is little reason to reject such approaches 

as somehow ‘less acceptable’ than analytic results. There is also much merit in their use 

as a set of experimental tools from which new datasets, tabulated results, theories, test 

procedures and models may be developed. Indeed, Monte Carlo simulation may well be 

the best approach to obtain meaningful tests of randomness or of alternative process 
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hypotheses. As noted earlier, the availability of such facilities within GIS would greatly 

simplify modelling and analysis, since such software typically holds the details of point 

events, transport networks and the details of boundary form. 

 

Surfaces: There has been very little research into distance computations across 

generalised surfaces – whether physical surfaces, cost surfaces or combinations of the 

two – this is a broad area warranting a considerable amount of further analysis and 

methodological development. Such research could lead to the development of a range of 

dynamic models and visualisation tools, both areas of great value that would benefit 

from new theories, techniques and toolsets. Methods based on optical analogies were 

shown to have a number of drawbacks and alternative procedures based on accumulated 

cost surfaces (ACS) were found to be preferable. ACS methods were also shown to be 

subject to error in some instances and of applicability to a restricted range of problems. 

However, development of the ACS notion in the form of Distance Transforms (DTs) 

and extension to DT methods was shown to be a promising step forwards.  

 

A second family of procedures was also shown to provide an effective approach to 

problems that are not suited to DT methods. These are based on a combination of 

search-and-optimise procedures. One such approach, based on random tree generation 

and variational optimisation was developed in some detail. We discuss outstanding 

issues relating to both of these developments in the final parts of this concluding 

Chapter. 

 

Networks and optimal location: In Chapter 8 we applied a number of the metrics, 

path models, and surface analysis results and techniques we devised in earlier Sections 

to standard problems in spatial analysis. The results obtained and extensions to 

procedures that we describe, serve to confirm the power of approaching such problems 

by careful analysis of their building blocks. There is enormous scope to develop and test 

such ideas further – for example: to develop approximation models which provide 

results that are both fast and asymptotically exact; to construct realistic and usable 

spatial choice models building upon the MWDT procedure; to construct dynamic traffic 

modelling and forecasting models utilising the LCDT approach; and to construct and 

evaluate models of networks under conditions of varying spatial cost. To this extent, the 
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work in the present study has the potential to be very much the start of a development 

programme. 

9.3 Distance transforms 

The results and examples provided in the preceding Sections have shown that the 

various Distance Transform (DT) procedures that we have developed provide a simple, 

powerful and extensible set of tools for spatial analysts and decision-makers. These 

procedures facilitate the handling of a wide variety of incremental Euclidean distance 

problems, including a range of image processing and visualisation applications, together 

with applications such as buffering and the determination of Voronoi regions (standard 

DT methods). Extensions to the basic DT algorithm support solution of least cost/time 

problems (LCDT methods), optionally including spatial constraints such as obstacles 

and no-go regions, and weighted multi-criteria (MWDT) problems. We have also shown 

that related DT methods can be used to determine geodesics on physically variable 

surfaces (VTDT). These various methods may be applied separately or in combination, 

and are ideally suited to implementation within current GIS software packages. 

 

A central and open question that remains is the stability and convergence of such 

procedures – experimental evidence suggests that DT procedures for inhomogeneous 

space problems are intrinsically convergent, but the generality of this finding and the 

quality (global nature) of such convergence requires close examination. Likewise, the 

dependence of computational methods on input parameters, the models used for 

representation of underlying data, dynamics, and scale are all areas for which much 

research is warranted. 

 

In applying standard and modified DTs of the kinds described in this study the 

following issues must be considered: 

 

(i) if a standard form of DT is used (i.e. there are no variations in cost, 

topography nor any obstacles) a predetermined number of passes of the 

masks will be required (one forward and one backward pass in the case of 

the simplest DTs) 
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(ii) if the conditions in (i) do not apply, the solution procedure requires iteration 

to ensure convergence of the solution values. Experimental evidence 

suggests that for most problems (potentially all unconstrained variable cost 

models) two iterations suffice (i.e. one complete extra set of scans; this can 

be readily demonstrated, for example, using the problem illustrated in Figure 

7-5). However, for some, more complex, problems up to 6 (or occasionally 

more) iterations may be required. Computations based on the VTDT 

algorithm indicate that a larger number of iterations may be required for this 

procedure. No theoretical analysis of convergence has been carried out at 

this time and this remains as an area for further research 

(iii) solutions will not converge to regions that are unreachable, i.e. to regions 

which are completely hidden behind impermeable barriers, very high cost 

zones and/or on sections of street networks not connected to the main area of 

study 

(iv) if the size of the sample lattice (or sub-sections of this lattice that are 

surrounded by barriers) is not greater than the DT mask size, then some or 

all distance values may not be updated and thus the procedure may be 

invalid 

(v) having generated the DT for a specific problem path computation may be 

required – least cost or time paths will be orthogonal to the optimal DT 

isolines, and these will not necessarily exactly match isolines generated from 

an exact DT algorithm. Furthermore, isolines and paths will be distorted by 

the lattice representation and may not follow local lines that are orthogonal 

to the isolines. If necessary path determination may be performed using 

smoothed isolines and/or a retained record of the optimal path, e.g. by 

storing additional data as part of the DT algorithm (as illustrated in Figure 

5-20B) 

 

Despite these concerns, we believe that the various DT procedures we have 

developed provide one of the most powerful computational approaches to problems 

in spatial analysis yet devised. Development of toolsets based on simple or exact 

DTs for use in conjunction with GIS packages is one area for early consideration. 

Another is the examination of further extensions to the family of models we have 

developed together with a more detailed exploration of their convergence and 
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precision. It is also anticipated that extension of these procedures to cover gradient 

and curvature constraints will be a fruitful area for further research. 

9.4 Search procedures 

DT procedures can be seen as a form of sweep search, exhaustively computing results 

using a lattice approximation to the underlying spatial data. It may be possible to 

develop DT techniques to handle more complex path-related constraints, but search 

procedures based on path growth seem more likely to yield effective solutions in these 

cases. In this study we have developed one such procedure, VORTAL, based on random 

tree constructs, which are then iteratively optimised. We have shown how such 

procedures can solve simple planar path problems and multiple inter-linked path 

problems, with or without obstacles, in an optimal manner. We have also shown that 

simple constraints, such as proximity and gradient constraints, can be incorporated into 

such models and yield high quality solutions, assuming that solutions are forthcoming.  

 

Once one introduces multiple constraints the question of solvability becomes of 

increasing importance. Potentially any number of paths can be constructed across a 

continuous unbounded region (or surface), of variable topography and/or cost, of finite 

length (i.e. ignoring fractal considerations). One or more of these paths may be of 

shortest length. However, there is no guarantee that such a path will be a smooth curve 

or will avoid regions of steep slopes. When such constraints are added the solution path 

may be required to take a far longer path, and in many instances the combination of 

curvature and gradient constraints may mean that there is no solution path possible. In 

such cases either one or more of the constraints must be relaxed, the project abandoned, 

or the implicit constraint that the path must be embedded in the surface must be 

amended. In the latter case tunnels, bridges or cut-and-fill constructs are required. The 

inclusion of such facilities within the VORTAL procedure would appear to be feasible 

but would require substantial modification of the algorithm and code developed to date. 

We see our development of the VORTAL procedure as very much the early stages of a 

development programme, with the next stage being application to a selection of real-

world problems. The latter will result in many enhancements to the procedure, both in 

terms of functionality and performance – finding better ways of selecting good potential 
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routes and improved methods of optimising the alternatives and evaluating topological 

variants. 

9.5 Overall conclusions 

In spite of the progress made, there remain many questions that require closer attention. 

Amongst these are: the treatment of vector fields and dynamic data; the thorough 

analysis of solvability and convergence; the formal analysis of selected problems 

involving constrained optimisation; the applications of the methods developed within 

spatial analysis and GIS and within other disciplines; and the changing importance of 

distance in current and future human (terrestrial) activity. In the Postscript, which 

follows these Conclusions, we comment briefly on one aspect of this latter issue, 

distance and telecommunications. In connection with this area we argue that 

telecommunications has a special role, similar to that of the many types and speeds of 

transport systems, in distorting the isotropic and simple metric view of the world, 

especially with respect to information-centric activity. 

 

If one were to seek a single, overall conclusion from the research programme 

undertaken in this study, it would be that the notion of distance, and the application of 

distance measures to practical problems, is far more complex than it appears at first 

sight! However, the process of analysis we have undertaken, which examines and then 

builds upon fundamental spatial components such as location, path and distance, we 

have found to be both stimulating and we hope, productive. 
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10 Postscript: Distance, telecommunications and 
timeliness 

Continuous technological development has led to the position whereby the speed of 

information transmission has resulted in the virtual elimination of geographic (spatial) 

considerations for some applications. Its earliest effects were felt with the development 

of the telegraph and radio communications, with application to longitude determination 

as noted at this start of this study. But with timely information being at the centre of 

military, commercial and even personal decision-making, electronic communications 

technologies have become central to a large number of spatial processes. 

 

Historically, distance has been a major factor in determining the speed of information 

delivery, thus influencing location decisions in a complex and dynamic (iterative) 

manner. For example, early in the 19th century, pigeons were very successfully used as 

express carriers of news – Rothschild’s Bank in London who provided the financial 

backing for Wellington’s forces in 1815 were the first in London to be informed of the 

outcome of the Battle of Waterloo as a result of having their own private pigeon post 

service from the front line. Thirty five years later Julius Reuter developed a niche 

business delivering the latest news and information - he used 45 pigeons to carry news 

and stock prices between Brussels in Belgium and Aachen in Germany within 2 hours, 

beating the railroad by six hours - the fastest route by road today is approximately 90 

miles in length and takes just under 2 hours to drive, excluding city centre congestion. 

Reuter’s venture was, in reality, a temporary ‘bridging’ operation, filling in the gap in 

the new telegraph lines that had been laid between Paris and Brussels, and between 

Berlin and Aachen. Reuter’s success led him to move to London in 1851, then the 

financial centre of Europe, where he established the news agency that subsequently 

became the leading financial news and price distribution service in the world. There was 

cause and effect here – the opportunities resultant upon a communications ‘innovation’ 

led Reuter to move to London, but once in London Reuter (and others) provided the 
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information and communications systems that enabled the City of London to dominate 

the world’s financial, currency and commodity markets for over a century. London 

became a global communications node, and remains so in many market areas. 

 

The value, and frequently the cost, of information are dependent on many factors, but 

assuming that the content meets the requirements of users, then timeliness and 

accessibility are major factors to be considered. Very valuable information is frequently 

either information that has little value after a short while (‘yesterday’s newspaper’) or 

information that is old but required at very short notice. An example of the latter is in 

handling emergencies – political, economic, medical etc. – which require very fast 

response and access to a large variety of information and transaction systems at short 

notice. In a similar (but more dramatic fashion) to distance decay functions, there is an 

equivalent (and often inter-related) information value time decay function from seconds 

through hours, days and months, of the form shown in Figure 10-1: 

Figure 10-1 Time decay of information value  

Value

Time

0.1s 1s 10s 1hr 1d

Crisis

1m

 
 

Many financial information services focus on the far left-hand side of the diagram. 

Reuters and others now deliver such data across global private networks using 

proprietary network protocols in order to sustain real-time throughput levels, giving 

sub-second data delivery simultaneously across their customer base. The data centres 

are linked by dedicated international communications circuits, which rely on satellite 

links, optical fibre cables and coaxial cables. Communication between data centres and 
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subscribers is usually by dedicated terrestrial circuits that are leased from 

telecommunications operators and are supplemented by a variety of other transmission 

systems, such as satellite-based networks. In practice, this high investment in 

infrastructure means that whilst service can be delivered almost anywhere in the world, 

including via the Internet, both the information provision infrastructures and content are 

expensive. Furthermore, it means that delivery at given guaranteed level of service is far 

more straightforward in the major financial centres than in provincial towns or less 

developed countries – for example, data delivery via geostationary satellite facilities is 

less reliable, serves northerly latitudes poorly, has inherent transmission delays, and in 

most instances does not provide interactive communications facilities, thus requiring 

augmentation by terrestrial links (e.g. for transaction handling). This places many 

regions of the world at a severe disadvantage in terms of such services. 

 

There are many other factors which result in concentration of facilities and services in 

major centres, despite telecommunications advances – high amongst these are the need 

for systems integration, security considerations and the necessity for face-to-face 

contact within and between businesses working in the same or similar markets. Whilst 

such factors are reducing in importance, and for example open outcry trading floors are 

closing down, it will be a long time before they disappear completely. 

 

The demise of many global competitors to Reuters is to some extent a testament to the 

company’s vision and technological innovation, but also reflects two key trends in this 

most demanding of marketplaces – globalisation and technological change. The former 

requires suppliers to deliver services everywhere in the world, with global content 

coverage, in a consistent and guaranteed manner. The latter exerts pressure upon all 

suppliers by reducing the unit cost of delivery for a given amount of information. One 

of the side effects of this is the growth of niche market players (rather as Reuter himself 

started in the 19th century) whose base location is no longer dependent on the largest 

network nodes. 

 

As noted above, timeliness is closely coupled with distance in determining the value 

and thus frequently the price of information. This has the greatest effect in time-critical 

markets, such as financial services, emergency planning, fast moving/urban transport 

systems and command and control systems. In the many information-centric 
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applications where timeliness is less important the domination of distance has 

substantially diminished and been replaced by cost and accessibility considerations. 

There is no simple model that can represent such time-distance inter-dependency1, but 

in broad terms we can agree to recognise explicitly the need for distance measures to 

include time, cost, and field data (flows) rather than just physical space.  

 

Just as physical distance may provide a surrogate for the time and cost of physical 

transport of goods or people, so we may consider the notion of Information Distance as 

a surrogate for the time and cost of non-physical delivery of information and services to 

a given location in response to a specific request from that location. For the present we 

define Information Distance2 as the lowest price obtainable in the market for the 

delivery of a pre-specified and unmodified (i.e. complete and error free) unit of 

information from a given source to a given destination (or set of destinations) in a given 

interval of time. If the delivery of a unit of information demands a positive 

acknowledgement and/or receipt of a unit of information in response, the sum of the 

delivery-plus-response price must be obtained. 

 

The unit of Information Distance is price (not cost, although the two may equate or be 

closely related). The parameters required for calculating Information Distance include 

the (logical and physical) location of the source, the (logical and physical) location of 

the destination, the requirements (technological, access) placed upon the destination by 

the source for satisfactory delivery, the specific information content sought (nature, 

volume) and the time parameters (start date/time, end date/time, delivery delay accepted 

or agreed, latency). From this it can be seen that a simple equation cannot be devised to 

provide a price, thus Information Distance is computed on a case-by-case basis, 

generally being derived from published tariffs and individual quotations. Such tariffs 

and quotations will vary according to the nature of the proposed purchasing decision – 

the length of contract, the size of contract, the location of the source and destination and 

the individual or organisation making the purchase. Therefore there is not strictly one 

Information Distance for a given user request, but many. 

 

Information Distance (ID) clearly does not provide a metric or the basis for a metric 

space under most circumstances. In general, however, the definition does satisfy the co-

location and separation rules, and in some cases may satisfy symmetry and triangularity 
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rules. An example of a well-defined ID space would be the set of all public, active static 

IP addresses in the world, together with the price for the delivery to any one of these 

addresses of the latest live trade price and volume of all National Market shares on the 

Nasdaq exchange during market open hours with a delay of less than 2 seconds from 

their release by the Exchange’s market data distribution systems – see further, Annex 4 

- Traffic, teletraffic and statistical self-similarity. 

 

Although the global availability of on-demand bandwidth3 is far from perfect and in 

practice bandwidth and switching capacity is limited for many purposes, much 

traditionally location-bound information is now susceptible to distance-independent 

location – connectivity, access, permissioning, reliability, true throughput, time and cost 

dominate over distance. In fact access accounts for 35% of service provision in current 

US inter-city voice networking as compared with 15% for the long-haul networking and 

50% is accounted for by areas such as marketing, billing and customer support. Thus 

70% of the ‘geographic’ cost is accounted for by local access. Access is a far more 

dominant factor in less-developed regions of the world, especially in Africa, parts of 

Asia and South America. In many instances there is either no access at all or access at 

speeds and/or costs that preclude almost all users other than international corporations 

and government units. 

 

This is not to say that network optimisation is no longer an issue in telecommunications 

– in fact it has been one of the most intensively researched areas of all over the last 25 

years, with many key results being produced by the major telecommunications research 

labs, notably Bell Labs (now AT&T labs) in New Jersey4. It is to some extent the 

success of this work that is reflected in the continuing lowering of per bit costs and 

reduction of distance dependency, especially in IP data networks. Despite the fact that 

the Internet, ATM networks and private IP networks5 generally provide distance-

independent tariffs, underlying costs are not distance-independent – they rely heavily on 

optic fibre availability and links to key gateways which tends to focus high-intensity 

traffic into a small number of major cities (see for example, Figure 10-2). 
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Figure 10-2 AT&T’s US inter-city optic fibre network links – 2001  

 
© AT&T 

 

More traditional networks, such as leased line facilities, still exhibit strong distance 

dependency based on a fee for the two local tails/links to Central Office (CO) facilities 

plus a linear fee based on a straight line (Euclidean) distance between CO’s. In many 

cases the distance component is tiered – relatively low cost, flat rate tariffs applying 

within close proximity to a suitable switch, coax cable or optic fibre route, and much 

higher rates (often a stepped or linear function of distance) for all other links.  

 

The combined effect of these two factors results in ‘clumping’ of service availability, 

e.g. at secure telecentre facilities such as Telehouse in London’s Docklands, similar to 

the patterns of joint demand and joint supply traditionally seen in retailing and 

manufacturing. Research by Martin Dodge and Narushige Shiode into the geography of 

ownership of Internet (IP) addresses in the United Kingdom6 illustrates this visually for 

London (strictly speaking this provides a surrogate view of connectivity, Figure 10-3). 

The Docklands area is at the eastern edge of the main highest density zone shown in the 

centre of the map (see red circle highlight). Interestingly enough there is now a move 

eastwards from this zone for security reasons – the Docklands zone and the towers of 

Canary Wharf are within a security cordon and post September 11th 2001 are regarded 

as more vulnerable than nearby areas to the east. This is by no means the first example 

of security issues determining UK IT facility location, but it is one of the most vivid in 

recent years. 



Postscript: Distance, telecommunications and timeliness 

328 

Figure 10-3 IP Address ownership density, London 

 
© Martin Dodge, 1998-2002 

 

It is important to note that these clumping effects are largely unaffected by the absolute 

cost per bit of information transmission, which has dropped substantially year on year 

for 25+ years. Demand, in the form of new services such as high resolution image 

transmission, streaming audio and video, voice over IP and streaming real-time data 

containing ever more detail (such as financial information and medical images) will 

more than make up for the per bit cost reductions. Overall, current statistics suggest that 

IP data traffic growth will dominate demand for at least the next 5 years and we are 

likely to see patterns such as those illustrated being re-enforced rather than dispersed 

over the coming years.  

 

The release of dependence on distance for some activities, such as non real-time 

information retrieval, access to information services, inter-personal communication, 

‘mail’, software development, graphic design, book editing etc. directly impacts the 

dynamics of the geographic space, rather as the introduction of motorways such as the 

M25 has impacted journey patterns. Figures released in June 2002 for UK employment 

show that approximately 2 million people or 7% of the working population now work at 

least one day a week from home, as telecommuters. In some industries, where people 

choose to live and work is less dependent on geography than access to good 

telecommunications infrastructures such as ISDN or ADSL. And vice versa, good 

telecommunications and IT infrastructures act as a pull factor for location decisions – 
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the concentration of high tech facilities in London’s docklands is a recent example of 

this.  

 

The telecommunications revolution diminishes or eliminates distances in a wide range 

of information-centric applications, including of course, the diffusion of innovations, 

but for many activities it has only an indirect effect (e.g. altering shopping patterns and 

delivery routes for certain classes of goods) or has very little short term effect at all. It 

can be argued, with today’s ever-increasing congestion and pollution, that much 

remains to be done to resolve the so-called tyranny of space, and that computers and 

information technology are only beginning to have an effect, albeit minor. And in some 

respects, the impacts are negative, increasing congestion as they facilitate centralisation 

and provide information on ever more places to visit and work.  

 

A fundamental challenge for Society is to devise ways of utilising new technologies to 

diminish the need for travel – for example, by providing direct electronic access to the 

contents of museums, libraries, galleries, shops and cinemas, not just access to their 

catalogues. Likewise, for the workplace, the development of real-time, large format 

audio-visual experiences and secure, economic remote access will enable practical 

teleworking and interaction with service providers to be extended to a large proportion 

of the populace, not just a minority for a subset of their time. This process needs to 

embrace public as well as private services, since in many countries access to such 

facilities is limited and very problematic, whilst in others they account for a large 

percentage of employment and economic activity. This applies especially to those 

services having direct contact with the public – medical services, education services and 

local and regional government.  

 

It is to be hoped that developments such as these will lead, in time, to greater 

investment in homes and community facilities rather than regional and national 

transport infrastructures. This may not bring about the ‘death of distance’ but perhaps, a 

more desirable objective, the ‘management of distance’ based on environmental and 

social principles, and not merely economic and political pressures.  
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Notes and References

                                                 
1 see for example, Murnion S (2000) Cyberspatial analysis: appropriate methods and metrics for a new 

geography, Ch.13 in Openshaw S, Abrahart R J (eds.) (2000) Geocomputation, Taylor and Francis, 

London 
2 This definition is not related to the information theoretic use of the term, e.g. as per Kullback and others 
3 Bandwidth: the amount of information (typically in bits/second) that may be transmitted from point A to 

point B in a network over a given time period. Note that bandwidth values require specification of more 

than just a single number, since it is important to know what the end-to-end achieved throughput is, 

whether this applies to all times of day and durations of transmission or just subsets, whether the 

delivery and throughput is guaranteed or not etc. 
4 http://www.research.att.com/ 
5 ATM – asynchronous transmission mode; IP – internet protocol 
6 http://www.cybergeography.org/ 
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11 Annex 1 - Nearest neighbour statistics 

This Annex provides derivations for the probability distribution and moments of the nth-

nearest neighbour distance in k-dimensional space. The analysis is based on ideas 

initially drafted by Prof. M F Goodchild and the present author in 1974, the first part of 

which draws on the earlier work of Thompson1 (1956), but which were not published at 

the time.  

 

The nearest neighbour statistic is obtained by obtaining the average distance from a set 

of randomly selected sample locations to the closest observed data points (events) in the 

sample space (point to event distances). This problem is equivalent to the problem of 

finding the mean values where the events themselves rather than random points are used 

as the sample locations (event-event distances). If this average distance is calculated for 

the nearest point it provides the first-order nearest neighbour statistic; if it measures the 

average distance to the second or subsequent points it provides the second or nth-order 

nearest neighbour statistic. If the observed point pattern is truly random throughout the 

sample space (commonly referred to as “Complete Spatial Randomness” or CSR) then 

the observed mean values will equal the expected, and their ratio will be unity.  

 

The distributions and expected values, derived below, assume an unbounded space and 

a predefined (known) point density, λ. This assumption has two important drawbacks: 

the first is that sample spaces are always finite and boundary effects may be significant; 

the second is that selection of the sample space will influence the results. The latter 

occurs for two reasons: first, the sample space may (in fact will generally) exhibit 

variation which may result in non-random observed point distribution; and second, 

different partitions of the possible sample space may alter the result (i.e. similar to the 

well-known modifiable areal unit problem). 

 

The basic solution to this problem for CSR has been known for many years2, but has 

recently attracted renewed interest from mathematicians and physicists3. This is partly 
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due to its wide range of applications: from the familiar areas of geography, ecology and 

epidemiology, to areas as varied as crime incident analysis4, packing problems, cluster 

analysis, minimal spanning trees, stellar dynamics, archaeological research and the 

behaviour of liquids.  

11.1.1 Linear case 

Consider a line of infinite length, with points randomly distributed along it according to 

a Poisson process, P(r), with mean density λ. Select one point, or location, at random. 

The probability that a point is found a distance r+∂r from this sample point may be 

given by: 

 

P(r)∂r = P(2r=0).P(2∂r=1) 

 

From the terms of the Poisson distribution we have: 
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The mean of this distribution is given by: 
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By making the substitution, 2rλ= x/2 in (1.1) above, the distribution can be seen to be a 

χ
2 distribution with 2 degrees of freedom: 

 

dxedxxP x 2/

2
1)( −

=  A1.2 

 

If we now sample N points and average the results, we obtain a better estimate of the 

mean nearest neighbour distance (reduced variance). This averaged value is simply: 
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The summation term in x is the sum of N χ2 distributions with 2 degrees of freedom, 

which is a χ2 distribution with 2N degrees of freedom. The mean of this distribution is 2 

and the variance, 2N, so the mean and variances based on a sample of N are simply: 
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These results can be generalised to nth-order nearest neighbours using the same method 

but in this case using the combined distribution: 

 

P(rn)∂rn = P(2r=n-1).P(2∂r=1) 
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In this case we find: 
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11.1.2 k-dimensional case 

The linear case utilises the ‘volume’ of a 1-dimensional hypersphere of radius, r, in its 

use of the term 2r. The general expression for the volume of a k-dimensional 

hypersphere, Vk , is given by: 
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Using these expressions the k-dimensional problem can be solved in the same manner as 

the 1-dimensional case: 

 

P(krn)∂r = P(Vk=n-1).P(∂Vk=1) 

 

from which we find: 
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substituting for dVk from above, we have 
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Letting Φrn
k = Vk  this becomes: 
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Thus, for first-order nearest neighbours in two dimensions, we have: 
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The mean of the distribution in A1.11 can be found by integration:  
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By making the substitution, x=λΦrn
k in (1.12) above, we have dx=kλΦrn

k-1drn and thus: 

 

dx/ kλΦrn
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Now rn=(x/λΦ)1/k and: 
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so the mean value is given by: 
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which we can also write as: 
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and general crude moments, α = 1, 2, 3… by: 
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Notes and references: 

                                                 
1 Thompson H R (1956) Distribution of distance to Nth neighbour in a population of randomly 

distributed individuals, Ecology, 37, 391-394 
2 it is believed to date back to Gustav Hertz (1887-1975) in 1909 
3 Percus A G, Martin O C (1998) Scaling universalities of k-th nearest neighbour distances on closed 

manifolds, Advances in Appl. Maths., 21, 424-436 

Evans D, Jones A J, Schmidt W M (2002) Asymptotic moments of near neighbour distance 

distributions, Proc. Roy. Soc. Lond. A, 458, 1-11 

These recent papers confirm that the results we derive in this Annex provide the basic model for more 

general cases, such as where the set of points is a specific number, N, the sample space is a compact 

closed body C rather than unbounded space, and the distribution of points in C may be selected 

according to any well-behaved sampling density. They also provide a model for the analysis of 

(hyperspherical) boundary effects by considering the additional case: P(k-1 sites exist at a distance≤ r) 

P(1 site exists at a distance= r+dr) and P(N-k sites exist at a distance > r+dr) within C  
4 see for example, Levine N (2002) Crimestat II: A spatial statistics program for the analysis of crime 

incident locations, N Levine & Associates, Houston, TX and National Institute for Justice, Washington 

DC, http://www.icpsr.umich.edu/NACJD/crimestat.html (National Archive of Criminal Justice Data, 

USA) 
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12 Annex 2 - Geodesics on cost surfaces  

Let ji
ij dxdxgyxFFdss ∫∫ ==

β

α

β

α

),(      Equ. 12-1 

where dx1 = dx, dx2 = dy and the gij are coefficients of the summation (as described 

earlier in the text), and α and β are initial and final point on some curve or path, C, 

along which the integral is to be evaluated. 

 

Now let F = eσ where σ = σ (x,y) = logeF then Equ. 1 becomes 

dtdxdxges ji
ij∫=

β

α

σ2   where t is a parameter   Equ. 12-2 

Let g*
ij = e2σ gij then the equation for incremental distance may be re-written as: 

dtdxdxgs ji
ij∫=

β

α

*        Equ. 12-3 

 

Minimising Equ.3 yields the geodesic equations1 (parameterised in terms of s, arc 

length): 

 

02

2

=








+
ds
dx

ds
dx

jk
l

ds
xd kj

l

  ( j, k, l = 1,2)    Equ. 12-4 

where summation is again assumed over repeated indices and 








jk
l is the modified 

Christoffel symbol of the second kind2. This symbol can also be written as: 
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where 0=
j

iδ  if i ≠ j and 1=
j

iδ  if i = j, and the ijg  are the entries in the inverse matrix 

of gij’s. Substituting in Equ.4 and letting Gl=0 be the geodesic equations on the original 

surface we have: 

0=−
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

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∂

∂
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δ
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δ    Equ. 12-6 

or 
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∂
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deg
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dx
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dx

x
G σσ

σ      Equ. 12-7 

 

Multiplying Equ.7 by (dy/dx)(ds/dx)2 when l=1 and by (ds/dx)2 when l=2 and 

subtracting produces a single equation in terms of x and y alone3: 

02 2 =







−

∂

∂
+ klk

k g
dx
dygD

x
G σ      Equ. 12-8 

 

where G=0 is the geodesic of the original surface in terms of x and y, and  

 

D = g11 + 2g12y′ +g22(y′)2  

 

Writing the second component of Equ.8 as R we have the desired result,  

G + R = 0        Equ. 12-9 

 

Now R may be written as 

 

 ( ) ( )( )11121222 '' gygFgygF
Fg
DR yx +−+=  

where  
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2221

1211

gg
gg

g =  

 

For the plane, g11=g22=1 and g12=g21=0 thus g = 1 and D = 1 + (y')2 giving 

( )yx FyF
F
yR −

+
= ')'(1 2

      Equ. 12-10 

and  G = y′′ 

12.1 Uniform and single variable cost functions 

As noted above, the general equation G+R=0 is simplest for the case where the physical 

surface is a plane. In this case G = y′′ and we have y′′ +R=0 as the set of equations to 

solve. Now the general form for R is: 

 

FFyFyR yx /))(1( 2
−′′+=  

 

where F(x,y) is a generalised cost function defined over the sample region.  

 

The single variable cost function in y is of the form: 

 

z = F(x,y) = F(y) 

 

Since z is a function of y only, partial derivatives with respect to x vanish, and Equ.10 

gives: 

 

FFyR y /)1( 2
′+−=  

thus: 

 

y′′ = (1 + y′2)Fy /F 

 

We examine four cases in the sections that follow:  

 

(i) F is a uniform (constant cost) function 
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(ii) F is a function of y or x alone 

(iii) F is a simple function of x and y combined 

(iv) The cost surface is re-mapped into polar coordinates (r,θ) and solutions for 

F(r) are sought, i.e. radially symmetric cost surfaces or velocity fields. This 

latter case has been the subject of analysis and solution for particular cases 

by Angel and Hyman and by Wardrop (see further, below) 

 

Solutions to piecewise linear models, such as a simple ridge, valley or marquee (roof-

like) structure, can be derived from the results for continuous sub-regions. In such cases 

a series of i separate boundary value problems may need to be solved to find analytic 

solutions for the optimum route from A to C (A to Bi, and Bi to C). 

12.1.1 Uniform costs 

If the cost function is uniform, i.e. F=a constant, then the differential equation to be 

solved is simply G=0. Shortest paths will therefore be straight lines. We can use this 

case as a base model for non-trivial cost functions, by taking a region of the plane and 

mapping paths about an initial point, say (xo,yo) = (5,2), with a range of initial 

directions.  

 

The directions we are using have the integer values over the range y′ (2) = [-10,10] 

i.e. a total of 21 directions. The solution equation is: 

 

y(x) = 5 + y′ (2).(x-2)   i.e. y(x) = yo + y′ (2).(x-xo) 

 

The cost function, taking F=1 is shown below, for comparison with subsequent cost 

functions: 

 

 
 

The path solution map over a sample space of y=[0,10], x=[0,10] is shown in Figure 

12-1. 
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Figure 12-1 Geodesic paths for the plane with constant costs, at y(5)=2 

 

12.1.2 Cost functions of one variable 

If F(x,y) is a function of y only, the expression for G+R, above, simplifies to: 

 

FFyy y /)1( 2
′+=′′  

 

Let w = 1 + y′2 then w’ = 2y′y′′ and substituting in the above equation we have:  

 

w′ = 2wy′Fy/F or 

w′/w = 2y′Fy/F 

 

Integrating each side of the equation gives us logew = loge(kF)2 where k is a constant of 

integration and re-substituting for w, gives 

 

loge(1 + y′2 )= loge(kF)2 

 

which can be re-written as: 
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∫ ∫=
−

dx
Fk
dy

122
 

 

For functions such as F = ay + b, F = a/y and F = aepy, y(x) may be found by direct 

integration. These cases are examined in the following subsections. Higher powers in y, 

such as y2, are not directly solvable (in the case of y2 the solution is in the form of 

elliptic integrals). For more complex functions series approximation and/or numerical 

integration is required. If F = 1/V, for example where V is velocity, the above 

expression can be re-written as: 

 

∫ ∫=
−

dx
Vk

kVdy
221

 

12.1.2.1 Linearly increasing costs – in one variable 

The cost function, F, can take many forms, but the simplest non-trivial case is a linear 

increase in y, e.g. F=ay+b, a>0. The general solution of G+R=0 for this case is: 

 

y(x) = αcosh(x/α+β/α)-b/a 

 

where α and β are constants which are determined by the initial or boundary conditions 

imposed. For example, let a=1/4, b=1 then the cost function, F, is as shown below: 

 

 
 

With these parameters the costs associated with any point of the sample space are at 

least 1 (when y=0), are constant for any given distance from y=0 (i.e. do not change 

with x), but increase steadily in the y-direction. As such they can be viewed as 

corresponding to increasing costs (or an environmental variable, such as noise or traffic 

congestion) in the neighbourhood of a linear feature, such as a highway, beachfront, 

urban region etc.  
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Inserting the selected values for a and b into the solution equation above we find: 

 

y(x) = αcosh(x/α+β/α)-4 

 

Suppose we wish to find the least cost path from (0,2) to (4,2). We find that this is 

satisfied by β=-2. Letting α=2/c and substituting for β we have: 

 

( ) 4
2

2cosh2)( −







−=

cx
c

xy  

 

For y(0)=2 as an initial point, this yields c=0.354498 (determined by numeric methods). 

The resulting path is plotted below (see Figure 12-2), together with the path from (0,2) 

to (4,3) (In this case β=-0.55, c=0.3347). These paths are known as catenary or 

hyperbolic cosine curves. Note that if b=0 the final term in the path function disappears 

but otherwise is unaltered. Also note that the form of the solution applies for all values 

of a>0.  

Figure 12-2 Least cost paths for F=y/4+1, from (0,2) to (4,2) and (0,2) to (4,3) 
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Path lengths and path costs in these two cases are clearly not equal. The straight-line 

(Euclidean) path lengths are 4.00 and √17 (c.4.12) respectively. The path costs along 

these straight-line paths are 6.00 and 6.70 respectively, whilst the path costs along the 

solution paths are 5.88 and 6.59, i.e. slightly lower cost despite the longer path. Path 

costs are computed by integrating Fds along the path selected (where ds2 = dx2 + dy2). 

 

Whilst closed form solutions are of inherent interest, it is not always easy to obtain the 

values for the constants by specifying boundary conditions (i.e. start and end points). A 

more general approach is to specify an initial condition (the location of the initial point) 

and then to calculate shortest path trajectories as a map based on varying the initial 

direction (first differential) systematically. This method, also known as a ‘shooting 

method’ for obvious reasons, can be applied to the analytic solution if a suitable form is 

available, or to a series approximation. Using a series solution of Taylor-Maclaurin 

type, and an initial point y(2)=5, we obtain a series in the above example of the form: 

 

...)2)())2('()2('(
486
1)2)())2('(1(

18
1)2)(2('5)( 3322

+−++−++−+= xyyxyxyxy  

 

i.e. a series in powers of (x-2) with coefficients that are functions of the derivative at the 

starting point (this result is similar to that described earlier for the constant costs case). 

This series can then be evaluated for a range of y′(2) values. In Figure 12-3 below the 

set of curves for integer values in the range y′(2) =[-5,5] are shown based upon this 

series solution. The curved form of the paths clearly shows the divergence from those 

shown earlier in the linear case. Divergence from the constant costs model increases as 

the coefficient of y increases. 
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Figure 12-3 Geodesic paths for the plane with cost function F=y/4+1, at y(5)=2 

 
Power series provide a very convenient solution approach but they suffer from lack of 

convergence at some distance from the initial point and/or with larger values of the first 

differentials at the initial point – in such cases a series approach is no longer acceptable.  

 

Analytic solutions have the advantage that they apply across all non-singular values of 

the expression. Using this approach, solving for the initial point y(2)=5 and then 

selecting a range of values for the second constant of integration, the map of least cost 

paths can be extended as far as required. This process is illustrated in the two figures 

below, for the linear case with a=1/4 and a=10 respectively. In the second example 

least cost paths between points that are not close are deflected very markedly towards 

the x-axis thereby taking advantage of the lower costs achievable, despite substantial 

increases in overall path length. 
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Figure 12-4 Geodesic paths for the plane with cost function F=y/4+1, at y(5)=2 

 

Figure 12-5 Geodesic paths for the plane with cost function F=10y+1, at y(5)=2 

 
A number of observations can be made concerning the geodesic paths for F=10y+1. 

The first observation is that we use the term geodesic paths in this instance (and others 

below) even though the paths cross in some cases and thus may not satisfy the global 

Inf{} condition for geodesics we stated in Chapter 4 – each path shown is a geodesic in 

the neighbourhood of the initial point but may not be a geodesic over its entire length. 

The second observation is that when locations are reasonably close to one another, 
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Euclidean straight-line paths provide a good approximation to optimal routes. However, 

the excessive costs incurred when travelling by Euclidean paths to points that are more 

widely separated justify radical departures from direct routes. Indeed, there is a critical 

point at which the cost of a direct route equals that of a totally different path, as can be 

seen above by considering paths from (2,5) to (7,6). In travel terms, if we equate this 

function to lower congestion where y is small (further from the core of the town or city) 

this equates to the question “is it worth driving across town to my destination or shall I 

go out to one of the ring routes and back in along an arterial route”? There are clearly 

quite large regions of the solution space where uncertainty predominates, i.e. a number 

of possible routes which may be radically different will have similar costs or travel 

times. A further issue relates to reachability. In the model illustrated, there is a region of 

the solution space in the lower right around (8,2) which does not appear to be reachable 

from (2,5). Solving from (8,2) confirms this observation (see below): 

Figure 12-6 Geodesic paths for the plane with cost function F=10y+1, at y(8)=2 

 
 

Clearly, optimal solution paths do exist but they involve paths that extend beyond the 

limits of the solution region into areas where y<0, or more correctly, a piecewise 

solution comprised of an arc from (2,5) to (x1,0), then from (x1,0) to (x2,0) and then from 

(x2,0) to (8,2), where 2 < x1 < x2 < 8. 
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If the cost function varies with x alone, the solution paths will be of inverse hyperbolic 

cosine form. Goodchild4 (1977) analysed this case and gave a solution in logarithmic 

form. 

12.1.2.2 Inverse cost function – one variable 

If F=a/(y+b) the cost function is at a maximum when y=0 (where it equals a/b, b>0) 

and diminishes rapidly with increasing y, as shown below:  

 

 
This means that paths, which bend away from the x-axis, will be less costly, being the 

reverse of the previous example. The solution to this problem is available in closed form 

and does not involve the constant, a. Evaluating the result as before with an initial value 

of y(2)=5 gives: 

 

y(x) = -b +/- √(b2+10b+29 + 4α - 2αx - x2) 

 

where α is a constant of integration, as before. Setting b=0 and squaring the equation to 

remove the square root shows that the solution is of the form: 

 

(x-2)2+ y2 = r2 where r2=29 in this case 

 

i.e. solution paths are arcs of circles or straight lines (when the y-values are equal). In 

fact, this result is well known in non-Euclidean geometry, since the expression 

 

221 dydx
y

ds +=  

 is the metric of hyperbolic or Lobachevsky space. Furthermore, if F=1/y represents 

variation in velocity over the region, this result shows that shortest time paths are arcs of 

circles with curvature towards regions of higher travel speeds. This result is illustrated 

below, using the same initial point and range as before (the arcs appear stretched but 

this is simply a result of differences in the x- and y-scales): 
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Figure 12-7 Geodesic paths for the plane, cost function F=a/(y+1), at y(2)=5 

 

12.1.2.3 Exponential function – one variable 

If F(x,y) = aepy then a family of cost functions is defined which vary with the choice of 

p. If p is negative costs decrease exponentially as y increases, and vice versa for p 

positive. The solution curves are of the form: 

 

))cos()sin(ln(1)( pxpx
p

xy βα −−=   where α and β are constants as 

before 

 

Setting y(2)=5 and p=-0.25 we can generate a family of solution paths as shown below.  
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Figure 12-8 Geodesic paths in cost field F=ae-y/4 at y(2)=5 

 
There is a clear similarity between this set of geodesic paths and the previous one, 

where solution paths were circle arcs. Optimal paths are diverted towards the lower cost 

region (higher values of y) in smooth arcs, with the degree of divergence from straight 

routes increasing with the separation of the initial and target locations. 

12.2 Bivariate cost functions 

A general bivariate linear cost function over the plane has the form F=ay+bx+c. This 

function is a tilted plane over the underlying uniform physical surface. A closed 

solution to this problem does not appear achievable. A series solution of the type 

described earlier can be found, but convergence is a problem.  

 

Figure 12-9 below shows solution paths obtained using a series approach for the cost 

surface F = y + x in the neighbourhood of x=2, for values of y′ (2)=[-2,2]. The solution 

path for y′ (2)=1 is y(x) = 3 + x, i.e. a straight line, since the rate of cost change is 

constant in this direction. For y′(2)=2, however, the polynomial solution is: 
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which does not converge for values of x which are much greater than 2. This finding 

confirms the earlier observation that in many cases series solutions of this form can only 

be used in the neighbourhood of the initial point.  

 

In this example, inspection of the solution paths shows:  

 

(i) there is always one solution path through a given point that is a Euclidean 

straight line (with direction ∇F) 

(ii) paths are asymmetric in form around a given initial point, as one would 

expect, and  

(iii) path shapes retain the hyperbolic cosine (cosh and cosh-1) curve structures of 

the solutions found for costs varying in y or x alone, but have a more 

pronounced curvature. 

Figure 12-9 Geodesic paths for the plane with cost function F=y+x, at y(5)=2 

 

12.3 Radially symmetric cost functions 

The radially symmetric cost function: 

 

z = F(r,θ) = F(r) 
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has been studied in detail by Angel and Hyman5 and Wardrop6. In this case we find that 

the integral relation is of the form: 

 

∫ ∫=
−

θd
Frkr

dr
1222

 

 

or, letting F = 1/V where V(r) is a radially symmetric velocity field, the relation is of the 

form: 

 

∫ ∫=
−

θd
VKrr

KVdr
222

 

 

For the case F =ωrp the solution path r(θ) may be found by direct methods. If p=1 the 

solution curves are derived by Angel and Hyman as log spirals, of the form ln(r) = mθ 

+ c where m and c are constants determined by the two boundary values or an initial 

value and direction.  

12.4 Composite cost functions 

Cost functions may be constructed by combining several contiguous regions, each of 

which has a different cost function. If these discrete cost functions have no 

discontinuities at their edges then paths from one region to another will be smooth and 

not refracted at the boundaries - solution paths are determined by the point of crossing 

and the direction of travel at that point (i.e. an initial value problem). For example, a 

composite model of traffic in a city might consist of a central rectangular region of 

approximately constant speed (say 10mph), with a linear velocity field on either side 

(10mph increasing to, say, 55 mph at the city edge), and a similar radially symmetric 

linear velocity field at each end. This lozenge-shaped or marquee city model facilitates 

direct computation of least time paths from any point in the city to any other – these will 

be comprised of linear, circular and log spiral elements.  
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Notes and references: 

                                                 
1 Eisenhart L P (1925) Riemannian Geometry, Princeton Univ. Press, Princeton, New Jersey, Section 17, 

“Geodesics”, p.50 Equ. 17-8 
2 Eisenhart L P (1925) op. cit., Section 28 “Conformal spaces. Spaces conformal to a flat space” 
3 an alternative simplification could be achieved by reversing the operations in y and x 
4 Goodchild M F (1977) An evaluation of lattice solutions to the problem of corridor location, 

Environment and Planning A, 9, p.732 
5 Angel S, Hyman G M (1976) Urban Fields, Pion, London, pp.20-29 
6 Wardrop J G (1969) Minimum-cost paths in urban areas, reprinted in Angel and Hyman (op. cit.), 

pp.155-161 



Annex 3 – Sample algorithms 

355 

13  Annex 3 – Sample algorithms 

13.1 Distance transforms 

13.1.1 Sample pseudo-code for 5x5 distance transforms 
DT( , ) is an array of lattice values, initialised to a large number, e.g. 9999 (greater than the maximum 
distance or cost distance) that will be generated by the algorithm; DT(n,m) = 0 is a set of 1 or more source 
points - e.g. a single point or set of points; xdim = number of rows–2; ydim = number of columns-2 
 
LDM( ) is local distance matrix (mask entries), with values a1, a2 and a3 (integer or fractional), e.g. 
a1=2.2062, a2=1.414, a3=0.9866 or a1=11, a2=7, a3=5 
 
DX( ) is an array of row movements and DY( ) an array of column movements, identifying the position in 
the mask to select 
 
Define masks, then scan DT array adjusting the distances until least local distance is selected; note that 
forward scan starts from row+2 col+2 and similarly for backwards scan, to allow for mask size 
 
In these examples, p is a scaling factor representing the lattice size (e.g. for a 25m DEM it would be 25), 
and 
DEM( , ) is a topographical adjustment array (e.g. DEM values), i.e. if p=1 and DEM( , )=constant then  
d1 = d +LDM(k) and the transform is a standard DT.  
 
COST( , ) is an array of generalised costs or velocity field values, with all entries >0 
 
Forward scan: 
Data: LDM(0) to LDM(8) = [a1;a1;a1;a2;a3;a2;a1;a3;0] 
Data: DX(0) to DX(8) = [-2; -2; -1; -1; -1; -1; -1; 0; 0] 
Data: DY(0) to DY(8) = [-1;1;-2;-1;0;1;2;-1;0] 
 
increment i = 2 to xdim 
increment j = 2 to ydim 
    d0=DT(i,j) 
    increment k = 0 to 8 
        r=i+DX(k) 
        c=j+DY(k) 
        d=DT(r,c) 
         if standard DT use 

d0=min(d+LDM(k),d0) 
else use one of the alternatives below: 

 
if variable topography problem include following lines: 

          s = LDM(k)*p 
         t = DEM(r,c)-DEM(i,j) 
        s1 = s*s 
        t1 = t*t 
        s2 = square-root(s1+t1) 
         d1 = d+s2 
         d0=min(d1,d0) 

 end of inclusion 
 

if variable cost/velocity field problem include following lines: 
          d0=min(d+LDM(k)*(COST(r,c)),d0) 
 end of inclusion 
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   next k 
if problem includes obstacles, code obstacles as XXXX (greater than max distance) and include  
the following lines: 

if DT(i,j)<XXXX then 
           DT(i,j)=d0 
      end if 

else use 
DT(i,j)=d0 

 end if 
next j 
next i 
 
Backwards scan: 
Data: LDM(0) to LDM(8) = [0;a3;a1;a2;a3;a2;a1;a1;a1] 
Data: DX(0) to DX(8) = [0; 0; 1; 1; 1; 1; 1; 2; 2] 
Data: DY(0) to DY(8) = [0;1;-2;-1;0;1;2;-1;1] 
 
increment i = xdim to 2 step -1 
increment j = ydim to 2 step -1 
    d0=DT(i,j) 
    increment k = 0 to 8 
        r=i+DX(k) 
        c=j+DY(k) 
        d=DT(r,c) 
         if standard DT use 

d0=min(d+LDM(k),d0) 
else use one of the alternatives below: 
 
if variable topography problem include following lines: 

          s = LDM(k)*p 
         t = DEM(r,c)-DEM(i,j) 
        s1 = s*s 
        t1 = t*t 
        s2 = square-root(s1+t1) 
         d1 = d+s2 
         d0=min(d1,d0) 

 end of inclusion 
 
if variable cost/velocity field problem include following lines: 

          d0=min(d+LDM(k)*(COST(r,c)),d0) 
 end of inclusion 
   next k 

if problem includes obstacles, code obstacles as XXXX (greater than max distance) and include  
the following lines: 

if DT(i,j)<XXXX then 
           DT(i,j)=d0 
      end if 

else use 
DT(i,j)=d0 

 end if 
next j 
next i 
 
for non-standard DT cases, iterate above until change in all DT(i,j) = 0 or < preset small value; to track 

solution paths record the values of DX(k) and DY(k) which are selected as the min values, storing the 

results in new arrays x(i,j) and y(i,j) or in an additional dimension of DT(i,j) 
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13.1.2 Sample MATLAB code for exact distance transform 
% Exact Euclidean Distance Transform  

% Uses MATLAB image processing toolbox function bwdist() with default  transform type (Euclidean) 

% Variation: Multiple weighted Distance Transform example - Decision diagram problem 

% Note: arrays of 1000x1000 or larger may be used, with sustained performance (seconds) 

home;tic; 

 

% define initial binary image with two object points (stations) and weights for stations (w1) and school (w2) 

bw = zeros(101,101); w1=1;w2=1.5; bw(90,11) = 1;  bw(70,81) = 1;  
 
% generate exact distance transform using built-in image toolbox function, first image 

D = bwdist(bw);  
 
% generate second distance transform  

bw = zeros(101,101);  bw(30,31) = 1;  E = bwdist(bw);  
 
% generate weighted combination of transforms 

G = w1*D + w2*E;  
 

% report solution minimum value 

p = min(min(G)) 
[i,j]=find(G==p) 
 
% report elapsed processing time (computational phase) 

toc 
 
% shaded contour plot 

tic ; whitebg([0 .4 .6]); rect = [100, 100, 650, 600]; 
figure(1); set(1,'Position',rect); str = datestr(now,0);  
contourf (G,15); colormap jet; alpha (.3); title([' Generated on: ',str]); xlabel('x-position'); ylabel ('y-position'); 
hold on; 
plot(j,i,'-ys','LineWidth',4,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',10); 
plot(11,91,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',10); 
hold on; 
plot(81,70,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',10); 
hold on; 
plot(31,30,'--rs','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',10); 
 

% report elapsed processing time (graphical rendering phase) 

toc 
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13.2 RRT and Vortal 

This section contains sample code extracts (C++) for RRT and the VORTAL Steiner 
optimisation problem described in the text. The procedure involves defining a triangle 
with or without rectangular obstacles, and then seeking an optimal path connecting all 
three vertices of the triangle by an intermediate point within the bounding triangle or at 
a vertex, avoiding the obstacles by a predefined proximity variable. the test program 
(steiner.exe) used in this example can be found at www.desmith.com/MJdS/index.html  
 
A random tree is generated from each vertex in turn. The function, GetNextRRTPoint(), 
is repeated for each vertex until it is possible to join two of the three paths (they are 
within ‘proximity’ distance of one another). The third path is then connected to the 
nearest vertex of the first two connected paths, i.e. this step is treated as a two point 
RRT problem.  
 
Once the three RRT paths have been determined and are connected by an intermediate 
point, an iterative path optimisation process is invoked as follows:  
 

(i) the DoOptimizeTight() function simulates ‘pulling’ on each path in 
turn, removing unnecessary intermediate points if the path length 
(cost) is reduced by so doing;  

(ii) the DoOptimizeSteiner() function then moves the connection point of 
the three ‘tightened’ paths to see if the overall distance/cost can be 
reduced; and  

(iii) the function DoOptimizeSteinerArrayMain() moves each 
intermediate point around until it achieves no further improvement. 
A variant of this operation (not shown in this extract) checks to see if 
intermediate points can be moved to ‘corners’ of the solution space 
(corners of obstacles) – this can result in further improvement of the 
optimisation 

 
Steps (ii) and (iii) are iterated until no further improvement is achieved. 
 
The core of this first part of the algorithm is the generation of new points: 
 
GetNextRRTPoint() 
 
CVertex* CSteinerWnd::GetNextRRTPoint( const CVertex* pVertexCurrent, const CVertex* pVertex1, const 
CVertex* pVertex2, const CPtrArray& array ) 
{ 

CPoint pntRandom; 
CPoint pntTemp; 
double dAlpha  = 0.0; 
double dCurrentDistance = GetDistance( pVertexCurrent->GetX(), pVertexCurrent->GetY(), pVertex1-
>GetX(),  

pVertex1->GetY(), pVertex2->GetX(), pVertex2->GetY() ); 
double dNewDistance = 0.0; 
CVertex* pNearestVertex = NULL 
int  i   = 0; 
int nNearestIndex  = 0; 

 
 do { 
  // get a random point in the state space 
  pntRandom.x = GetNextX(); 
  pntRandom.y = GetNextY();  
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  // the new point must be at least one step size away from the old one 
  if ( GetDistance( pVertexCurrent->GetX(), pVertexCurrent->GetY(), pntRandom.x,  

pntRandom.y ) >= m_nWalkStep ) 
  { 
   // find nearest point in previously generated vertices 
   nNearestIndex = FindNearest( pntRandom, array ); 
   pNearestVertex = (CVertex*)array.GetAt( nNearestIndex ); 
   pntTemp.x = pNearestVertex->GetX(); 
   pntTemp.y = pNearestVertex->GetY(); 
 
   if (pntRandom.x == pNearestVertex->GetX())  
   {// point is in the same horizontal line 
    pntTemp.y = pNearestVertex->GetY() + m_nWalkStep; 
   } 
   else if (pntRandom.y == pNearestVertex->GetY()) 
   {// new point is in the same vertical line 
    pntTemp.x = pNearestVertex->GetX() + m_nWalkStep; 
   } 
   else 
   {// get angle between current point and the random point 
    dAlpha = GetAngle( pntTemp, pntRandom ); 
  
   // use the angle to calculate next point at m_nWalkStep distance 
    GetPointFromAngle( pntTemp, pntRandom, dAlpha, m_nWalkStep ); 
   } 
   //check if the point is in our triangle 
   if ( PtInTriangle( pntTemp ) ) 
   {// Point is in triangle - continue with the calculation. 
    // re-calculate current distance as a distance between the 
     // nearest point and the destination points 
    dCurrentDistance = GetDistance( pNearestVertex->GetX(), pNearestVertex- 

>GetY(), pVertex1->GetX(), pVertex1->GetY(), pVertex2->GetX(),  
pVertex2->GetY() ); 

 
    // now, when we have the next point - check if the distance 
    // between CURRENT point and the DESTINATION points is less then 
    // distance between NEXT point and the DESTINATION points 

dNewDistance = GetDistance( pntTemp.x, pntTemp.y, pVertex1->GetX(),  
pVertex1->GetY(), pVertex2->GetX(), pVertex2->GetY() ); 

    if (dCurrentDistance > dNewDistance) 
    {// improvement in distance 
     // check if new point is too close to any of the obstacles 
     if (IsTooCloseToObstacles( pntTemp )) 
     { 
      dNewDistance = dCurrentDistance + 1.0; 
      continue; 
     } 
    } 
   } 
   i++; 
  } 
 } while(i<MAX_ITER_NUM && dCurrentDistance <= dNewDistance );  

// repeat calculation until NEW distance is less then the OLD distance 
 
 if ( i >= MAX_ITER_NUM || dNewDistance == 0 ) 
 {// this point is wrong. The algorithm tried too many times to find next point 
  return NULL; 
 } 
 else 
 { 
  ASSERT( pntTemp.x >=0 && pntTemp.y >= 0); 
  CVertex* pVertex = new CVertex( pntTemp.x, pntTemp.y, pNearestVertex ); 
  return pVertex; // return new distance between two points 
 } 
} 
//returns random X coordinate within the given boundaries 
int CSteinerWnd::GetNextX() const 
{ 
 int nX; 
 do { 
  nX = m_pRand->IRandom(m_nLeftBoundary, m_nRightBoundary); 
 } while( nX < m_nLeftBoundary || nX > m_nRightBoundary); 
 return nX; 
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} 
// returns random Y coordinate within the given boundaries 
int CSteinerWnd::GetNextY() const 
{ 
 int nY; 
 int i = 0; 
 do { 
  nY = m_pRand->IRandom(m_nTopBoundary, m_nBottomBoundary); 
 } while( nY < m_nTopBoundary || nY > m_nBottomBoundary); 
 return nY; 
} 
// returns angle in radians between two points 
double CSteinerWnd::GetAngle( const CPoint& pnt1, const CPoint& pnt2 ) const 
{ 
 return atan2(  fabs(pnt1.y - pnt2.y),  fabs(pnt2.x - pnt1.x) ); 
} 
// use the angle to calculate next point at m_nWalkStep distance 
void CSteinerWnd::GetPointFromAngle( CPoint& pntCurrent, const CPoint& pntRandom, double dAlpha, int 
nStep ) const 
{ 
 if (pntRandom.x > pntCurrent.x) 
 { 
  pntCurrent.x += cos( dAlpha ) * nStep; 
 } 
 else 
 { 
  pntCurrent.x -= cos( dAlpha ) * nStep; 
 } 
 if (pntRandom.y > pntCurrent.y) 
 { 
  pntCurrent.y += sin( dAlpha ) * nStep; 
 } 
 else 
 { 
  pntCurrent.y -= sin( dAlpha ) * nStep; 
 } 
} 
 
The next step is to ‘tighten’ the random tree paths by removing vertices: 
 
DoOptimizeTight() 
 
/* 
 Tight rope optimisation. Each path (array) must be optimised. 
*/ 
double CSteinerWnd::DoOptimizeTight( ) 
{ 
 double dDist = OptimizeTightPartial( m_ResultingArray1 ); 
 dDist += OptimizeTightPartial( m_ResultingArray2 ); 
 dDist += OptimizeTightPartial( m_ResultingArray3 ); 
 return dDist; 
} 
/* 
 Tight-line optimisation applied only on one path (array) 
*/ 
double CSteinerWnd::OptimizeTightPartial( CPtrArray& arrResulting ) 
{ 
 // get current distance from starting point to ending point 
 double dOldDistance = GetDistance( arrResulting ); 
 CPtrArray arrTmp;  
 int i, nStart = 0; 
 CVertex* pVertex1 = NULL; 
 CVertex* pVertex2 = NULL; 
 CVertex* pVertexNew = NULL; 
 CVertex* pParent = NULL; 
 BOOL bGetNew = TRUE; 
 
 while( nStart < arrResulting.GetSize()) 
 { 
  if (bGetNew) 
  { 
   pVertex1 = (CVertex*)arrResulting.GetAt( nStart ); 
   pVertexNew = new CVertex( pVertex1->GetX(), pVertex1->GetY(), pParent ); 
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   arrTmp.Add( pVertexNew ); 
 
   pParent = pVertexNew; 
  } 
  else 
  { 
   bGetNew = TRUE; 
  } 
 
  nStart ++; 
  // check each subsequent point if a valid line can be 
  // drawn from pVertex1 to pVertex2 
  for( i=nStart; i<arrResulting.GetSize(); i++) 
  { 
   pVertex2 = (CVertex*)arrResulting.GetAt( i ); 
   //if the new line is not a valid one. Get one step back, and 
   //draw the line between the starting vertex and the current one 
   if (!IsLineOK( pVertex1->GetX(), pVertex1->GetY(), pVertex2->GetX(), pVertex2->GetY() 
)) 
   { 
    if (nStart == i) 
    { 
     pVertexNew = new CVertex( pVertex1->GetX(), pVertex2->GetY(),  

pParent ); 
     arrTmp.Add( pVertexNew ); 
     pParent = pVertexNew; 
 
     pVertexNew = new CVertex( pVertex2->GetX(), pVertex2->GetY(),  

pParent ); 
     arrTmp.Add( pVertexNew ); 
     pParent = pVertexNew; 
    } 
    else 
    { 
     CVertex* pVertexPrevious = (CVertex*)arrResulting.GetAt( i-1 ); 
     if ( IsLineOK( pVertex1->GetX(), pVertex1->GetY(), pVertexPrevious- 

>GetX(), pVertex2->GetY() ) ) 
     { 
      pVertexNew = new CVertex( pVertexPrevious->GetX(),  

pVertex2->GetY(), pParent ); 
      arrTmp.Add( pVertexNew ); 
      pParent = pVertexNew; 
      nStart = i - 1; 
      bGetNew = FALSE; 
      pVertex1->SetX( pVertexNew->GetX() ); 
      pVertex1->SetY( pVertexNew->GetY() ); 
      break; 
     } 
     else if ( IsLineOK( pVertex1->GetX(), pVertex1->GetY(), pVertex2- 

>GetX(), pVertexPrevious->GetY() ) ) 
     { 
      pVertexNew = new CVertex( pVertex2->GetX(),  

pVertexPrevious->GetY(), pParent ); 
      arrTmp.Add( pVertexNew ); 
      pParent = pVertexNew; 
      nStart = i - 1; 
      bGetNew = FALSE; 
      pVertex1->SetX( pVertexNew->GetX() ); 
      pVertex1->SetY( pVertexNew->GetY() ); 
      break; 
     } 
     else 
     { 
      nStart = i - 1; 
      break; 
     } 
    } 
   } 
  } 
  if ( i == arrResulting.GetSize() ) 
  { 
   pVertex1 = (CVertex*)arrResulting.GetAt( i-1 ); 
   pVertexNew = new CVertex( pVertex1->GetX(), pVertex1->GetY(), pParent ); 
   arrTmp.Add( pVertexNew ); 
   nStart = i; 
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  } 
 } 
 double dNewDistance = GetDistance( arrTmp ); 
 // if new distance is less then the previous one the optimisation is OK 
 if ( dNewDistance < dOldDistance ) 
 {// BINGO! new distance is better 
  for( i=0; i<arrResulting.GetSize(); i++) 
  { 
   pVertex1 =  (CVertex*)arrResulting.GetAt( i ); 
   delete pVertex1; 
  } 
  arrResulting.RemoveAll(); 
  for( i=0; i<arrTmp.GetSize(); i++) 
  { 
   pVertex1 =  (CVertex*)arrTmp.GetAt( i ); 
   arrResulting.Add( pVertex1 ); 
  } 
  arrTmp.RemoveAll(); 
  Invalidate(); 
  dOldDistance = dNewDistance; 
 } 
 else 
 {// nothing! we have to delete the temp array. 
  for( i=0; i<arrTmp.GetSize(); i++) 
  { 
   pVertex1 =  (CVertex*)arrTmp.GetAt( i ); 
   delete pVertex1; 
  } 
  arrTmp.RemoveAll(); 
 } 
 return dOldDistance; 
} 
 
We now have a valid set of three paths, with partially optimised length, but which can 
be improved further by selecting alternative locations for the intermediate point at 
which the paths are joined and by moving the vertices that comprises each path. These 
two optimisations are computed iteratively until no further improvement in the total 
path length/cost if found.  
 
Initially we move the intermediate point: 
 
DoOptimizeSteiner () 
 
/* 
 Moves connection point until the best solution is achieved 
*/ 
double CSteinerWnd::DoOptimizeSteiner() 
{ 
 if (m_ResultingArray1.GetSize() > 1 && 
  m_ResultingArray2.GetSize() > 1 && 
  m_ResultingArray3.GetSize() > 1) 
 { 
  CVertex* pVertex1 = (CVertex*)m_ResultingArray1.GetAt( m_ResultingArray1.GetSize() - 2 ); 
  CVertex* pVertex2 = (CVertex*)m_ResultingArray2.GetAt( m_ResultingArray2.GetSize() - 2 ); 
  CVertex* pVertex3 = (CVertex*)m_ResultingArray3.GetAt( m_ResultingArray3.GetSize() - 2 ); 
   
  double dOldDistance =  
   GetDistance( pVertex1->GetX(), pVertex1->GetY(), m_pConnectionVertex->GetX(),  

m_pConnectionVertex->GetY() ) +  
   GetDistance( pVertex2->GetX(), pVertex2->GetY(), m_pConnectionVertex->GetX(),  

m_pConnectionVertex->GetY() ) + 
   GetDistance( pVertex3->GetX(), pVertex3->GetY(), m_pConnectionVertex->GetX(),  

m_pConnectionVertex->GetY() ) ; 
 
  double dDist  = dOldDistance+1.0; 
  int  i = 0; 
  BOOL bBetterSolutionFound = FALSE; 
 
  while ( dDist != dOldDistance && ++i<1000) 
  { 
   dOldDistance = dDist; 
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   dDist = OptimizeSteinerPartial( dOldDistance, pVertex1, pVertex2, pVertex3 ); 
   if (dDist < dOldDistance) 
   { 
    bBetterSolutionFound = TRUE; 
    UpdateWindow(); 
   } 
  } 
  if (bBetterSolutionFound) 
  { 
   //update connection points 
   pVertex1 = (CVertex*)m_ResultingArray1.GetAt( m_ResultingArray1.GetSize() - 1 ); 
   pVertex2 = (CVertex*)m_ResultingArray2.GetAt( m_ResultingArray2.GetSize() - 1 ); 
   pVertex3 = (CVertex*)m_ResultingArray3.GetAt( m_ResultingArray3.GetSize() - 1 ); 
 
   pVertex1->SetX( m_pConnectionVertex->GetX() ); 
   pVertex1->SetY( m_pConnectionVertex->GetY() ); 
   pVertex2->SetX( m_pConnectionVertex->GetX() ); 
   pVertex2->SetY( m_pConnectionVertex->GetY() ); 
   pVertex3->SetX( m_pConnectionVertex->GetX() ); 
   pVertex3->SetY( m_pConnectionVertex->GetY() ); 
   Invalidate(); 
  } 
  return  GetDistance( m_ResultingArray1 ) +  GetDistance( m_ResultingArray2 ) + 

 GetDistance( m_ResultingArray3 ); 
 } 
 return 0; 
} 
 
OptimizeSteinerPartial() 
 
#define OPTIMISATION_STEP  1 
 
double CSteinerWnd::OptimizeSteinerPartial( double dOldDistance, CVertex* pVertex1, CVertex* pVertex2, 
CVertex*  

pVertex3 ) 
{ 
 double dDist = dOldDistance; 
 dDist = SteinerPartial( -OPTIMISATION_STEP, -OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 
); 
 dDist = SteinerPartial( 0, -OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 ); 
 dDist = SteinerPartial( OPTIMISATION_STEP, -OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 
); 
 dDist = SteinerPartial( -OPTIMISATION_STEP, 0, dDist, pVertex1, pVertex2, pVertex3 ); 
 dDist = SteinerPartial( OPTIMISATION_STEP, 0, dDist, pVertex1, pVertex2, pVertex3 ); 
 dDist = SteinerPartial( -OPTIMISATION_STEP, OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 
); 
 dDist = SteinerPartial( 0, OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 ); 
 dDist = SteinerPartial( OPTIMISATION_STEP, OPTIMISATION_STEP, dDist, pVertex1, pVertex2, pVertex3 
); 
 return dDist; 
} 
 
SteinerPartial() 
 
double CSteinerWnd::SteinerPartial( int nDeltaX, int nDeltaY, double dOldDistance, CVertex* pVertex1, CVertex*  

pVertex2, CVertex* pVertex3  ) 
{ 
 double dTemp = dOldDistance; 
 dTemp =  GetDistance( pVertex1->GetX(), pVertex1->GetY(), m_pConnectionVertex->GetX()+nDeltaX,  

m_pConnectionVertex->GetY()+nDeltaY ) +  
  GetDistance( pVertex2->GetX(), pVertex2->GetY(), m_pConnectionVertex->GetX()+nDeltaX,  

m_pConnectionVertex->GetY()+nDeltaY ) + 
  GetDistance( pVertex3->GetX(), pVertex3->GetY(), m_pConnectionVertex->GetX()+nDeltaX,  

m_pConnectionVertex->GetY()+nDeltaY ) ; 
 if ( dTemp < dOldDistance ) 
 { 
  //check if the corrected lines are all OK 
  if (IsLineOK(  pVertex1->GetX(), pVertex1->GetY(), m_pConnectionVertex->GetX()+nDeltaX,  

m_pConnectionVertex->GetY()+nDeltaY ) 
   && IsLineOK(  pVertex2->GetX(), pVertex2->GetY(), m_pConnectionVertex-
>GetX()+nDeltaX,  

m_pConnectionVertex->GetY()+nDeltaY ) 
   && IsLineOK(  pVertex3->GetX(), pVertex3->GetY(), m_pConnectionVertex-
>GetX()+nDeltaX,  
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m_pConnectionVertex->GetY()+nDeltaY ) ) 
  { 
   m_pConnectionVertex->SetX( m_pConnectionVertex->GetX() + nDeltaX ); 
   m_pConnectionVertex->SetY( m_pConnectionVertex->GetY() + nDeltaY ); 
   Invalidate(); 
   return dTemp; 
  } 
 } 
 return dOldDistance; 
} 
 
We now move the points that comprise each of the three paths. In this case the points 
are maintained in an array. 
 
DoOptimizeSteinerArrayMain() 
 
double CSteinerWnd::DoOptimizeSteinerArrayMain() 
{ 
 double dDist = DoOptimizeSteinerArray( m_ResultingArray1 ); 
 dDist += DoOptimizeSteinerArray( m_ResultingArray2 ); 
 dDist += DoOptimizeSteinerArray( m_ResultingArray3 ); 
 return dDist; 
} 
 
DoOptimizeSteinerArray() 
 
double CSteinerWnd::DoOptimizeSteinerArray( CPtrArray& array ) 
{ 
 double dOldDistance = GetDistance( array ); 
 double dDistance = dOldDistance; 
 int  k = 0; 
 //CVertex* pVertex = NULL; 
 BOOL bBetterSolutionFound = TRUE; 
 BOOL bFound1 = FALSE; 
 BOOL bFound2 = FALSE; 
 
 if ( array.GetSize() <= 2)  
 { 
  return dOldDistance; 
 } 
 
 int j = 0; 
 while ( j++ < 10 && bBetterSolutionFound)  
 { 
  bBetterSolutionFound = FALSE; 
  for( int i=array.GetSize()-2; i>0; i-- ) 
  { 
   k = 0; 
   bFound1 = TRUE; 
   while ( bFound1 && ++k<1000) 
   { 
    bFound1 = FALSE; 
    dOldDistance = dDistance; 
    dDistance = OptimizeSteinerArray( dOldDistance, i, array ); 
 
    if (dDistance < dOldDistance) 
    { 
     bBetterSolutionFound = TRUE; 
     bFound1 = TRUE; 
     UpdateWindow(); 
    } 
    else 
    { 
     bFound1 = FALSE; 
    } 
   } 
  } 
 
  for( i=1; i<array.GetSize()-1; i++ ) 
  { 
   k = 0; 
   bFound2 = TRUE; 
   while ( bFound2 && ++k<1000) 
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   { 
    bFound2 = FALSE; 
    dOldDistance = dDistance; 
    dDistance = OptimizeSteinerArray( dOldDistance, i, array ); 
 
    if (dDistance < dOldDistance) 
    { 
     bBetterSolutionFound = TRUE; 
     bFound2 = TRUE; 
     UpdateWindow(); 
    } 
    else 
    { 
     bFound2 = FALSE; 
    } 
   }  
  } 
 } 
 return GetDistance( array ); 
} 
 
Move the selected point to each of 8 neighbouring locations, based on the predefined 
optimisation step size and local 3x3 neighbourhood: 
 
OptimizeSteinerArray() 
 
double CSteinerWnd::OptimizeSteinerArray( double dOldDistance, int nIndex, CPtrArray& array ) 
{ 
 double dDist = dOldDistance; 
 dDist = SteinerPartialArray( -OPTIMISATION_STEP, -OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( 0, -OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( OPTIMISATION_STEP, -OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( -OPTIMISATION_STEP, 0, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( OPTIMISATION_STEP, 0, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( -OPTIMISATION_STEP, OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( 0, OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 dDist = SteinerPartialArray( OPTIMISATION_STEP, OPTIMISATION_STEP, dDist, nIndex, array); 
 if (dDist < dOldDistance) dOldDistance = dDist; 
 return dOldDistance; 
}
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14 Annex 4 - Traffic, teletraffic and statistical self-
similarity 

The statistical behaviour of telecommunications traffic (and LAN traffic) is the subject 

of an entire discipline known as teletraffic engineering and was one of the early 

foundation stones of statistics. Queuing theory, which originated in 19th century 

teletraffic analysis, provides models, solutions and insights for physical traffic. A core 

assumption of much of this analysis is that traffic arrival rates are independent and 

random (following a Poisson distribution). As with road traffic, teletraffic engineering is 

concerned with the rate of arrival of traffic into systems (switched networks) and the 

amount of time traffic spends within the system (hold times in session-oriented systems, 

transition times in session-less flows, and volume of data transmitted). Experience in 

teletraffic shows that a number of techniques can be implemented to manage flows 

more effectively – these include: ensuring the percent occupancy of facilities (e.g. links, 

switches and buffers) remains low, in many systems below 20% - this minimises the 

risk of collision, queuing and feedback effects such as retries; ensuring the system has 

multiple alternate routing options – this minimises the impact of link loss and provides 

diversity in case of unexpected peaks; smoothing design – this relates to a range of 

mechanisms, some content dependent, which aim to reduce the peak-to-average ratio, 

and includes the set of techniques known as traffic shaping. These techniques enable all 

(or more) traffic to be carried with greater reliability on a given capacity of network. In 

physical traffic engineering variable speed limit systems, traffic management schemes 

and multiple routes aim to have such effects. Feedback as a result of congestion may 

also have this effect but is less desirable as a short-term measure since it results in a 

degradation of service quality or throughput speed. 

 

Recent research into the traffic characteristics of packetised data flows (e.g. IP traffic, 

LAN traffic, FTP file sizes etc) has shown that despite design efforts many types of data 

are far more peaky in their arrival rates and more long-tailed in their statistical 
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distributions than one would expect with classical models1. The close relationship 

between long-tailed/heavy-tailed statistical distributions, power laws and long-range 

autocorrelation has suggested to some researchers that much data traffic is actually 

fractal in its nature.  

 

Fractal (fractional dimension or more correctly, self-similar or self-affine) behaviour 

can be detected in a number of ways, notably by examining the long-range 

autocorrelation exhibited in the data2. As an example, we take the case of equity trade 

data output by the Nasdaq Stock Exchange. We can then consider the implications of 

such information for ‘cybergeography’ and traditional location theory.  

 

The shares of Cisco are of particular interest, as they are amongst the most heavily 

traded on the Nasdaq market and also they are the principal supplier of the routing 

technology that underlies current IP networking. A sample dataset from 7th February 

2002 was logged and the records from 13:00 – 15:00 GMT analysed. A total of just over 

32000 records were transmitted, mostly trades (i.e. buys and sells) rather than price 

changes. Each record includes a date/timestamp to the nearest 1/100th of a second. 

These were analysed by calculating the frequency of updates, M, per 1, 10, 100 and 

1000 second intervals (i.e. logM = 1,2,3,4), and comparing this aggregation with the log 

of the variance at each level of aggregation (see Figure 14-1). The variance was 

consistently much larger than the mean (in a Poisson these would be the same) and the 

logVar decreased steadily for the whole sample from a high of 1.97 (M=1) to a low of 

1.47 (M=4). This result is clearly heavily skewed towards the tail of the distribution, 

and shows a degree of self-similarity, but it would be wrong to ascribe this to any 

particular model at this stage. 
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Figure 14-1 Cisco (Nasdaq record updates)10 second aggregates, 14:27-15:00 
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Examining the data we see that there is an exceptionally large peak very shortly after 

14:30:00 when the market opens, followed by a stabilisation after 2-3 minutes, with 

continued erratic behaviour thereafter but at a lower scale. The reason for this pattern is 

a reflection of the fact that almost all the data is generated by ‘retail’ order flow, that is, 

by private investors buying or selling relatively small numbers of shares (under a 1000 

at a time in general). This trading process is conducted via their brokers to some extent, 

but to a larger degree by automated e-brokerage systems such as E-Trade, Schwab and 

similar online systems. Overnight, and before the Nasdaq market opens, buyers and 

sellers are placing orders with a resultant rush at market open when execution 

commences. It reflects a growing dis-intermediation in the marketplace, with regional 

brokerages being replaced in their order management role by centralised automated 

systems, connected to a single centralised electronic market. In a sense this is an aspect 

of globalisation and reflects simultaneously a trend towards increased centralisation (of 

certain core services) coupled with increased decentralisation (of demand). Modern 

telecommunications infrastructures and associated computing facilities thus have a 

complex role in re-shaping the geography of supply, demand and service provision, 

acting in at least three ways simultaneously, i.e.: dis-intermediation, centralisation and 

decentralisation.  
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Whilst there is definite evidence for unifractal and possibly multi-fractal behaviour of 

data communications traffic the jury remains out on this question3. What it does 

highlight is that fractal analysis techniques which originated in mathematical, financial 

and spatial research, turn out to have application in the statistical modelling of 

telecommunications, and almost certainly in physical traffic flows as well – cyberspace 

and cybergeography has unexpected links with traditional spatial models and both can 

provide insights and models for each other. 
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Notes and references:

                                                 
1 Paxson V, Floyd S (1995) Wide area traffic: The failure of Poisson modelling, IEEE/ACM Trans. on 

Networking, 3, 226-244 
2 The finite (bounded) nature of exchange data and much teletraffic limits the range of correlation 

considered. For trading data limited hours operation (e.g. 08:00 – 16:30 in London) remains the norm. 
3 Trang D D, Molnar S, Vidacs A (1996) Investigation of fractal properties of data traffic, High Speed 

Networks Lab., Tech Univ. of Budapest 
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16 Internet links 

16.1.1.1 Principal links, by subject (alphabetic) 

AT&T/Bell labs research: 
http://www.research.att.com/ 

Computational geometry: 
Geometry in action: 
 http://www.ics.uci.edu/~eppstein/geom.html  
Voronoi diagrams: 
 http://okabe.t.u-tokyo.ac.jp/okabelab/Voronoi/index.html  

CASA 
http://www.casa.ucl.ac.uk/about/index.htm 
http://www.casabook.com/ 

GPS and earth rotation: 
UK and European GPS: 
http://www.gps.gov.uk 
Galileo: 
http://europa.eu.int/comm/dgs/energy_transport/galileo/index_en.htm  

 GPS and altitude: 
 http://mtp/jpl.nasa.gov/notes/altitude/altitude.html  
 International Earth Rotation Service (IERS): 

http://hpiers.obspm.fr/ 
Graph theory and network problems: 

http://www.nada.kth.se/~viggo/wwwcompendium/wwwcompendium.html 
Lighthouses: 

http://www.iala-aism.org/mainsite/index.html  
http://www.lighthousemuseum.co.uk 
www.nlb.org.uk  

LOLA home page:  
http://www.mathematik.uni-kl.de/~lola/ 

Magnetic variation: 
http://Earth.agu.org/sci_soc/campbell.html 
http://www.ngdc.noaa.gov/IAGA/wg8/igrfhw.html  

Maps of cybergeography: 
http://www.cybergeography.org/ 

Mathematical biographies: 
http://www-gap.dcs.st-and.ac.uk/~history/  

MATLAB: 
http://www.mathworks.com  

National Library of Scotland, “Charting the Nation” (Scotland) and Scapa Flow maps: 
http://www.nls.uk/maps 
http://www.chartingthenation.lib.ed.ac.uk/mapscot.html  
Scapa Flow: 
http://www.undiscoveredscotland.co.uk/eastmainland/churchill/ 

Robotics: 
Automated animated characters: 
 http://robotics.stanford.edu/~kuffner/anim/index.html 
“RRT”: 
 http://msl.cs.uiuc.edu/rrt/ 

Spatial statistics tools including point pattern analysis: 
 Splancs (Diggle et al) 

http://www.maths.lancs.ac.uk/Software/Splancs/  
http://www.csiss.org/clearinghouse/select-tools.php3 
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Crimestat II (Levine): 
http://www.icpsr.umich.edu/NACJD/crimestat.html  

UCSB/NCGIA-sited projects: 
Varenius: 
 http://www.ncgia.ucsb.edu/varenius/varenius.html 
Vital: 
 www.ncgia.ucsb.edu/vital 

UK Hydrographic office: 
 http://www.ukho.gov.uk/index.html  

UK Road statistics: 
http://www.transtat.dtlr.gov.uk/roadtraf/ 

Vincenty algorithms and terrestrial distances: 
http://www.auslig.gov.au/geodesy/datums/calcs.htm  
http://www.census.gov/cgi-bin/geo/gisfaq?Q5.1 

16.1.1.2 Links for selected authors 

Prof G Borgefors (Uppsala University, Sweden): 
http://www.cb.uu.se/~gunilla/publications.html  

Dr O Cuisenaire (École Polytechnique Fédérale de Lausanne) 
http://ltswww.epfl.ch/~cuisenai/DT/ 

Prof M F Goodchild (UCSB, USA): 
http://www.geog.ucsb.edu/~good/ 

Dr D S Johnson (AT&T Labs, USA): 
http://www.research.att.com/~dsj/pub.html  

Dr R Kimmel (Technion – Israeli Institute of Technology, Haifa): 
http://www.cs.technion.ac.il/~ron/pub.html  

Dr J S B Mitchell (SUNY, Stony Brook, USA): 
http://www.ams.sunysb.edu/~jsbm/publications.html 

Prof N Rowe (US Naval Postgraduate School, Monterey, California): 
http://www.cs.nps.navy.mil/people/faculty/rowe/index.html  
 


